Guida Tecnica

Guida alla Selezione della Sezione del Cavo

// TUTTO QUELLO CHE DEVI SAPERE SULLA SCELTA DELLA SEZIONE CORRETTA DEL CAVO //

QUICK_START

Selezione del Cavo in 3 Passi

1

Determinare il Carico

Calcola il carico totale in ampere del tuo circuito

2

Misurare la Distanza

Misura la distanza totale dal quadro al carico

3

Selezionare il Cavo

Usa il nostro calcolatore per trovare la sezione AWG ottimale

AWG_SYSTEM

Comprendere il Sistema AWG

Il sistema American Wire Gauge (AWG) è lo standard per il dimensionamento dei cavi in Nord America. Numeri AWG più piccoli indicano cavi più spessi con maggiore portata di corrente. AWG 0000 (4/0) è il cavo più grande comune, mentre AWG 40 è uno dei più piccoli.

Common Applications:

  • AWG 14 - 15A circuits, lighting (2400W @ 120V)
  • AWG 12 - 20A circuits, outlets (2400W @ 120V)
  • AWG 10 - 30A circuits, AC units (3600W @ 120V)
  • AWG 8 - 40-50A, electric ranges
  • AWG 6 - 55-65A, EV chargers, sub-panels
VOLTAGE_DROP

Considerazioni sulla Caduta di Tensione

La caduta di tensione è la riduzione di tensione che si verifica quando la corrente scorre attraverso un cavo. È causata dalla resistenza del conduttore e aumenta con la lunghezza del cavo e la corrente. Il NEC raccomanda di mantenere la caduta di tensione sotto il 3% per i circuiti derivati e il 5% totale per alimentatori più circuiti derivati.

Why It Matters:

  • Excessive drop causes motors to overheat
  • Lights dim, especially during startups
  • Reduced efficiency and wasted energy
  • Shortened equipment lifespan

Solution: Use larger wire gauge for long runs (>50ft)

AMPACITY_GUIDE

Portata e Classificazioni di Temperatura

La portata è la corrente massima che un conduttore può trasportare continuamente senza superare la sua classificazione di temperatura. La portata è influenzata dal tipo di isolamento, dalla temperatura ambiente, dal numero di conduttori e dal metodo di installazione.

Insulation Types:

60°C (TW, UF)Older standard, wet locations
75°C (THWN, THHN)Most common, dry/wet locations
90°C (THHN, XHHW)High temp, dry locations only
MATERIAL_COMPARISON

Rame vs Alluminio

RAME

  • Minore resistenza
  • Più flessibile
  • Migliore conduttività
  • Sezione più piccola necessaria
  • Standard residenziale

ALLUMINIO

  • Costo inferiore
  • Peso più leggero
  • Buono per lunghe distanze
  • Ingresso servizio
  • Grandi alimentatori

Nota: L'alluminio richiede 2 sezioni più grandi del rame per la stessa portata

WARNINGS

Common Wire Sizing Mistakes to Avoid

DON'T:

  • Ignore voltage drop on long runs
  • Use undersized wire to save money
  • Forget the 80% continuous load rule
  • Mix copper and aluminum without proper connectors
  • Exceed breaker size ratings

DO:

  • Calculate based on actual load + safety margin
  • Consider future expansion needs
  • Follow NEC Table 310.16 for ampacity
  • Use our calculator for accurate sizing
  • Consult electrician for complex installations
EXAMPLE_CALCULATION

Real-World Example: Sizing Wire for a Workshop

Scenario:

Installing a 240V, 30A circuit for a workshop 100 feet from the main panel.

Check NEC Ampacity Table

AWG 10 copper is rated for 30A at 60°C (NEC 310.16)

Calculate Voltage Drop

AWG 10 resistance: 1.0Ω/1000ft | Drop = (1.0 × 200ft × 30A) / 1000 = 6V | Percentage = (6V / 240V) × 100 = 2.5%

RESULT: AWG 10 Copper Wire

Meets both ampacity and voltage drop requirements. Use THHN/THWN-2 insulation rated for 90°C.

NEC_CODE_REQUIREMENTS

Requisiti del Codice NEC

Il National Electrical Code (NEC) stabilisce i requisiti minimi di dimensionamento dei cavi. Consulta sempre il NEC attuale e i codici locali per la tua installazione specifica.

NEC Table 310.16

The primary reference for conductor ampacity. Lists maximum current for copper and aluminum conductors at different temperature ratings (60°C, 75°C, 90°C) based on 30°C ambient temperature.

AWG60°C75°C90°C
1415A20A25A
1220A25A30A
1030A35A40A
840A50A55A

NEC 240.4(D) Overcurrent Protection

Small conductors must be protected at specific maximum breaker sizes, regardless of calculated ampacity. These are strict limits that cannot be exceeded.

14 AWG Copper15A Max
12 AWG Copper20A Max
10 AWG Copper30A Max

NEC Voltage Drop Recommendations

While not mandatory requirements, the NEC provides informational notes recommending voltage drop limits for optimal equipment operation and energy efficiency.

3%

Branch Circuits

2%

Feeders

5%

Total Combined

DERATING_FACTORS

Fattori di Riduzione

I fattori di riduzione diminuiscono la portata di un conduttore in base alle condizioni di installazione effettive rispetto alle condizioni di riferimento.

Ambient Temperature Correction

NEC Table 310.16 is based on 30°C (86°F) ambient temperature. For higher temperatures, apply correction factors from NEC Table 310.15(B)(1).

Ambient (°C)60°C Wire75°C Wire90°C Wire
31-350.910.940.96
36-400.820.880.91
41-450.710.820.87
46-500.580.750.82

Conduit Fill Adjustment

When multiple current-carrying conductors share a raceway, heat buildup requires ampacity reduction per NEC Table 310.15(C)(1).

ConductorsAdjustment Factor
1-3100%
4-680%
7-970%
10-2050%
21-3045%

Example: Combined Derating

Scenario: 10 AWG THHN (90°C) in conduit with 6 conductors at 40°C ambient
Base ampacity: 40A (90°C column)
Temperature factor: 0.91
Conduit factor: 0.80
Adjusted ampacity: 40 × 0.91 × 0.80 = 29.1A

APPLICATION_GUIDELINES

Wire Sizing by Application Type

Different applications have unique considerations beyond basic ampacity and voltage drop calculations. Understanding these specific requirements helps ensure optimal performance and code compliance.

Residenziale

  • 15A circuits: 14 AWG minimum
  • 20A circuits: 12 AWG minimum
  • Kitchen/bathroom: 20A GFCI required
  • Laundry: Dedicated 20A circuit
  • Consider future load growth

Industriale

  • Motor circuits: Size for FLA + 25%
  • HVAC: Check manufacturer specs
  • 3-phase: Different calculations apply
  • Demand factors may reduce size
  • Consider harmonic loads

EV Charging

  • Level 2: 40-80A typical
  • 100% continuous load rating
  • 6 AWG for 50A, 4 AWG for 60A
  • Plan for longer cable runs
  • Consider load management

Solar PV Systems

  • DC circuits: Different ampacity rules
  • String sizing affects wire size
  • Conduit in sun: Temperature derating
  • PV wire vs THHN requirements
  • NEC Article 690 compliance

Shop/Garage

  • Welder: Check duty cycle rating
  • Air compressor: Motor starting current
  • Size for largest single load
  • Sub-panel may be needed
  • Voltage drop critical for motors

Low Voltage/Data

  • 12V systems: Voltage drop critical
  • Landscape lighting: 12-16 AWG typical
  • Speaker wire: 14-16 AWG for distance
  • POE: Cat6 cable ratings
  • DC power: Lower voltage = larger wire
VOLTAGE_DROP_DETAILED

Understanding Voltage Drop Calculations

Voltage drop is the reduction in voltage along a conductor due to its inherent resistance. For long wire runs, voltage drop often becomes the determining factor in wire size selection, requiring larger wire than ampacity alone would suggest.

Single-Phase Voltage Drop Formula

Vdrop = (2 × K × I × D) / CM

K = K = Resistivity constant (12.9 for Cu, 21.2 for Al)

I = I = Current in amperes

D = D = One-way distance in feet

CM = CM = Circular mils of conductor

The factor of 2 accounts for current traveling both ways (to load and back).

Three-Phase Voltage Drop Formula

Vdrop = (1.732 × K × I × D) / CM

1.732 = √3 (three-phase factor)

K = Resistivity constant

I = Line current in amperes

D = One-way distance in feet

Three-phase systems have lower voltage drop for the same power due to the √3 factor.

When Voltage Drop Matters Most

HIGH IMPACT SCENARIOS:

  • Long runs (>50ft for 120V, >100ft for 240V)
  • Motor loads (sensitive to voltage)
  • Low voltage systems (12V, 24V)
  • High current circuits
  • Sensitive electronic equipment

LOWER IMPACT SCENARIOS:

  • Short runs under 25 feet
  • Higher voltage systems (480V+)
  • Resistive loads (heaters, lights)
  • Modern switching power supplies
  • Low current applications
DECISION_PROCESS

Processo Decisionale

Segui questo processo passo-passo per selezionare la sezione del cavo appropriata per la tua applicazione.

1

Determine Load Requirements

Calculate total connected load in amperes. For continuous loads (3+ hours), multiply by 1.25. For motor loads, use full-load amperage (FLA) from nameplate, not running amps.

2

Size for Ampacity (NEC 310.16)

Select wire size based on temperature rating of insulation and terminals. Most residential uses 75°C column. This is your minimum wire size based on current.

3

Apply Derating Factors

Reduce ampacity for ambient temperature above 30°C and for more than 3 conductors in a raceway. If derated ampacity is below required load, size up.

4

Calculate Voltage Drop

For runs over 50 feet, verify voltage drop is within 3% for branch circuits. If drop exceeds limit, increase wire size until compliant.

5

Select Final Wire Size

Choose the LARGER of: ampacity-based size (after derating) OR voltage drop-based size. This ensures both safety and performance requirements are met.

RELATED_CALCULATORS

Calcolatori e strumenti per il dimensionamento dei cavi

Usa la nostra suite di calcolatori elettrici per semplificare le decisioni di dimensionamento dei cavi. Ogni strumento gestisce calcoli specifici automaticamente seguendo le linee guida NEC.

TOOLS

PRONTO A DIMENSIONARE IL TUO CAVO?

Usa il nostro calcolatore di sezione cavo gratuito per ottenere raccomandazioni precise per il tuo progetto.