Guía Técnica

Guía de Selección de Calibre de Cable

// TODO LO QUE NECESITA SABER SOBRE ELEGIR EL CALIBRE DE CABLE CORRECTO //

QUICK_START

Selección de Cable en 3 Pasos

1

Determinar la Carga

Calcule la carga total en amperes de su circuito

2

Medir la Distancia

Mida la distancia total del panel a la carga

3

Seleccionar el Cable

Use nuestra calculadora para encontrar el calibre AWG óptimo

AWG_SYSTEM

Entendiendo el Sistema AWG

El sistema American Wire Gauge (AWG) es el estándar de dimensionamiento de cables en Norteamérica. Números AWG más pequeños indican cables más gruesos con mayor capacidad de corriente. AWG 0000 (4/0) es el cable más grande común, mientras que AWG 40 es uno de los más pequeños.

Common Applications:

  • AWG 14 - 15A circuits, lighting (2400W @ 120V)
  • AWG 12 - 20A circuits, outlets (2400W @ 120V)
  • AWG 10 - 30A circuits, AC units (3600W @ 120V)
  • AWG 8 - 40-50A, electric ranges
  • AWG 6 - 55-65A, EV chargers, sub-panels
VOLTAGE_DROP

Consideraciones de Caída de Voltaje

La caída de voltaje es la reducción de voltaje que ocurre cuando la corriente fluye a través de un cable. Es causada por la resistencia del conductor y aumenta con la longitud del cable y la corriente. El NEC recomienda mantener la caída de voltaje por debajo del 3% para circuitos derivados y 5% total para alimentadores más circuitos derivados.

Why It Matters:

  • Excessive drop causes motors to overheat
  • Lights dim, especially during startups
  • Reduced efficiency and wasted energy
  • Shortened equipment lifespan

Solution: Use larger wire gauge for long runs (>50ft)

AMPACITY_GUIDE

Capacidad de Corriente y Clasificaciones de Temperatura

La capacidad de corriente es la corriente máxima que un conductor puede llevar continuamente sin exceder su clasificación de temperatura. La capacidad de corriente es afectada por el tipo de aislamiento, temperatura ambiente, número de conductores y método de instalación.

Insulation Types:

60°C (TW, UF)Older standard, wet locations
75°C (THWN, THHN)Most common, dry/wet locations
90°C (THHN, XHHW)High temp, dry locations only
MATERIAL_COMPARISON

Cobre vs Aluminio

COBRE

  • Menor resistencia
  • Más flexible
  • Mejor conductividad
  • Se necesita calibre más pequeño
  • Estándar residencial

ALUMINIO

  • Menor costo
  • Peso más ligero
  • Bueno para largas distancias
  • Acometida
  • Alimentadores grandes

Nota: El aluminio requiere 2 calibres más grandes que el cobre para el mismo amperaje

WARNINGS

Common Wire Sizing Mistakes to Avoid

DON'T:

  • Ignore voltage drop on long runs
  • Use undersized wire to save money
  • Forget the 80% continuous load rule
  • Mix copper and aluminum without proper connectors
  • Exceed breaker size ratings

DO:

  • Calculate based on actual load + safety margin
  • Consider future expansion needs
  • Follow NEC Table 310.16 for ampacity
  • Use our calculator for accurate sizing
  • Consult electrician for complex installations
EXAMPLE_CALCULATION

Real-World Example: Sizing Wire for a Workshop

Scenario:

Installing a 240V, 30A circuit for a workshop 100 feet from the main panel.

Check NEC Ampacity Table

AWG 10 copper is rated for 30A at 60°C (NEC 310.16)

Calculate Voltage Drop

AWG 10 resistance: 1.0Ω/1000ft | Drop = (1.0 × 200ft × 30A) / 1000 = 6V | Percentage = (6V / 240V) × 100 = 2.5%

RESULT: AWG 10 Copper Wire

Meets both ampacity and voltage drop requirements. Use THHN/THWN-2 insulation rated for 90°C.

NEC_CODE_REQUIREMENTS

Requisitos del Código NEC

El National Electrical Code (NEC) establece requisitos mínimos de dimensionamiento de cables. Siempre consulte el NEC actual y los códigos locales para su instalación específica.

NEC Table 310.16

The primary reference for conductor ampacity. Lists maximum current for copper and aluminum conductors at different temperature ratings (60°C, 75°C, 90°C) based on 30°C ambient temperature.

AWG60°C75°C90°C
1415A20A25A
1220A25A30A
1030A35A40A
840A50A55A

NEC 240.4(D) Overcurrent Protection

Small conductors must be protected at specific maximum breaker sizes, regardless of calculated ampacity. These are strict limits that cannot be exceeded.

14 AWG Copper15A Max
12 AWG Copper20A Max
10 AWG Copper30A Max

NEC Voltage Drop Recommendations

While not mandatory requirements, the NEC provides informational notes recommending voltage drop limits for optimal equipment operation and energy efficiency.

3%

Branch Circuits

2%

Feeders

5%

Total Combined

DERATING_FACTORS

Factores de Reducción

Los factores de reducción disminuyen la capacidad de corriente de un conductor basándose en las condiciones de instalación reales comparadas con las condiciones de referencia.

Ambient Temperature Correction

NEC Table 310.16 is based on 30°C (86°F) ambient temperature. For higher temperatures, apply correction factors from NEC Table 310.15(B)(1).

Ambient (°C)60°C Wire75°C Wire90°C Wire
31-350.910.940.96
36-400.820.880.91
41-450.710.820.87
46-500.580.750.82

Conduit Fill Adjustment

When multiple current-carrying conductors share a raceway, heat buildup requires ampacity reduction per NEC Table 310.15(C)(1).

ConductorsAdjustment Factor
1-3100%
4-680%
7-970%
10-2050%
21-3045%

Example: Combined Derating

Scenario: 10 AWG THHN (90°C) in conduit with 6 conductors at 40°C ambient
Base ampacity: 40A (90°C column)
Temperature factor: 0.91
Conduit factor: 0.80
Adjusted ampacity: 40 × 0.91 × 0.80 = 29.1A

APPLICATION_GUIDELINES

Wire Sizing by Application Type

Different applications have unique considerations beyond basic ampacity and voltage drop calculations. Understanding these specific requirements helps ensure optimal performance and code compliance.

Residencial

  • 15A circuits: 14 AWG minimum
  • 20A circuits: 12 AWG minimum
  • Kitchen/bathroom: 20A GFCI required
  • Laundry: Dedicated 20A circuit
  • Consider future load growth

Industrial

  • Motor circuits: Size for FLA + 25%
  • HVAC: Check manufacturer specs
  • 3-phase: Different calculations apply
  • Demand factors may reduce size
  • Consider harmonic loads

EV Charging

  • Level 2: 40-80A typical
  • 100% continuous load rating
  • 6 AWG for 50A, 4 AWG for 60A
  • Plan for longer cable runs
  • Consider load management

Solar PV Systems

  • DC circuits: Different ampacity rules
  • String sizing affects wire size
  • Conduit in sun: Temperature derating
  • PV wire vs THHN requirements
  • NEC Article 690 compliance

Shop/Garage

  • Welder: Check duty cycle rating
  • Air compressor: Motor starting current
  • Size for largest single load
  • Sub-panel may be needed
  • Voltage drop critical for motors

Low Voltage/Data

  • 12V systems: Voltage drop critical
  • Landscape lighting: 12-16 AWG typical
  • Speaker wire: 14-16 AWG for distance
  • POE: Cat6 cable ratings
  • DC power: Lower voltage = larger wire
VOLTAGE_DROP_DETAILED

Understanding Voltage Drop Calculations

Voltage drop is the reduction in voltage along a conductor due to its inherent resistance. For long wire runs, voltage drop often becomes the determining factor in wire size selection, requiring larger wire than ampacity alone would suggest.

Single-Phase Voltage Drop Formula

Vdrop = (2 × K × I × D) / CM

K = K = Resistivity constant (12.9 for Cu, 21.2 for Al)

I = I = Current in amperes

D = D = One-way distance in feet

CM = CM = Circular mils of conductor

The factor of 2 accounts for current traveling both ways (to load and back).

Three-Phase Voltage Drop Formula

Vdrop = (1.732 × K × I × D) / CM

1.732 = √3 (three-phase factor)

K = Resistivity constant

I = Line current in amperes

D = One-way distance in feet

Three-phase systems have lower voltage drop for the same power due to the √3 factor.

When Voltage Drop Matters Most

HIGH IMPACT SCENARIOS:

  • Long runs (>50ft for 120V, >100ft for 240V)
  • Motor loads (sensitive to voltage)
  • Low voltage systems (12V, 24V)
  • High current circuits
  • Sensitive electronic equipment

LOWER IMPACT SCENARIOS:

  • Short runs under 25 feet
  • Higher voltage systems (480V+)
  • Resistive loads (heaters, lights)
  • Modern switching power supplies
  • Low current applications
DECISION_PROCESS

Proceso de Decisión

Siga este proceso paso a paso para seleccionar el calibre de cable apropiado para su aplicación.

1

Determine Load Requirements

Calculate total connected load in amperes. For continuous loads (3+ hours), multiply by 1.25. For motor loads, use full-load amperage (FLA) from nameplate, not running amps.

2

Size for Ampacity (NEC 310.16)

Select wire size based on temperature rating of insulation and terminals. Most residential uses 75°C column. This is your minimum wire size based on current.

3

Apply Derating Factors

Reduce ampacity for ambient temperature above 30°C and for more than 3 conductors in a raceway. If derated ampacity is below required load, size up.

4

Calculate Voltage Drop

For runs over 50 feet, verify voltage drop is within 3% for branch circuits. If drop exceeds limit, increase wire size until compliant.

5

Select Final Wire Size

Choose the LARGER of: ampacity-based size (after derating) OR voltage drop-based size. This ensures both safety and performance requirements are met.

RELATED_CALCULATORS

Calculadoras y herramientas de dimensionamiento de cables

Usa nuestra suite de calculadoras eléctricas para simplificar las decisiones de dimensionamiento de cables. Cada herramienta maneja cálculos específicos automáticamente siguiendo las directrices NEC.

TOOLS

LISTO PARA DIMENSIONAR TU CABLE?

Use nuestra calculadora gratuita para obtener recomendaciones instantáneas de calibre de cable para su proyecto según corriente, distancia y requisitos de voltaje.